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OX1 3QZ, UK 

Received 21 July 1988 

Abstract. From an exact theory presented in a previous paper, we develop systematically an 
approximate single-site description for the density of states of a random tight-binding model 
characterised by quenched liquid-like disorder. The resultant theory is formally equivalent 
to the single super-chain approximation (SSCA) introduced by Wertheim in the context of 
classical dielectric theory. We show that the SSCA is equivalent to the effective-medium 
approximation (EMA) of Roth, and further, for a simple choice of the pair distribution 
function, that the SSCA/EMA is formally equivalent to the mean spherical approximation of 
liquid-state theory. For a Yukawa transfer matrix element, an analytic solution of the SSCA/ 
EMA is derived and its predictions discussed. A comparison is also made with the Matsubara- 
Toyozawa approximation to illustrate the effect of including the structural characteristics of 
the system. Finally, we discuss some straightforward extensions of the theory including 
incorporation of site-diagonal disorder, multiple-hopping processes, and the effects of 
orbital overlap. 

1. Introduction 

In previous years, numerous theories have been proposed for the density of states of 
spatially disordered systems, which incorporate at some level of approximation the 
structural characteristics of the disordered medium. In a recent paper (Logan and Winn 
1988, to be referred to as I) we have given a formally exact description of the ensemble- 
averaged Green functions for an off-diagonally disordered tight-binding model charac- 
terised by quenched liquid-like disorder. In this paper we develop systematically an 
approximate single-site theory for the averaged Green functions. As in I we draw on 
parallels from classical dielectric theory, and the single-site theory given here is formally 
identical to the single super-chain approximation (SSCA) of Wertheim (1973) in the 
dielectric context. In 0 2 we show in addition that the SSCA is equivalent to the effective- 
medium approximation (EMA) of Roth (1974a, b, 1975,1976), which has been studied 
numerically and is usually regarded as the best single-site theory for the density of states. 

To our knowledge, however, no analytical solutions to the EMA equations have been 
given. For a simple choice of the pair distribution function, we show in 9 2 that the SSCA/ 
EMA is further equivalent to the much-studied mean spherical approximation of liquid- 
state theory for the pair distribution function of a classical liquid (Lebowitz and Percus 
1966). Analytical solutions to the latter problem are known from which, for a variety of 
transfer matrix elements, we can in turn obtain corresponding solutions to the SSCA/EMA 
for the density of states of a spatially disordered tight-binding model. An application of 
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this is given in § 3 for the case of a Yukawa transfer matrix element, and the resulting 
density of states is discussed in some detail in § 4. In the final section we discuss some 
generalisations of the theory, including incorporation of site-diagonal disorder (which 
is simple), extension to include the multiple-hopping processes omitted in any single- 
site theory, and the inclusion of overlap effects, which is also straightforward. We begin 
by summarising the basic equations given in I. 

For a given centre-of-mass configuration, the model system we consider is specified 
by a tight-binding Hamiltonian 

H = &;c:ci + 2' V ,  c:ci (1) 
i ij 

where c: (ci) is a creation (annihilation) operator for the one-electron (or exciton) state 
centred on site i, which has centre-of-mass position Ri.  is the zero-order site energy, 
Vij is the transfer matrix element between sites i and j ,  and the prime in the second 
summation excludes the case i = j .  In general, the may be treated as independent 
random variables with a given probability distribution, P(E!) ,  but in most of this paper 
we will consider the case of pure off-diagonal disorder, = eo for all i; without loss of 
generality we can set = 0. For single-site theories, such as the one developed in this 
paper, extension to include site-diagonal disorder is straightforward, and we will briefly 
discuss this case in the final section. We also assume that Vii is a function only of the 
relative site centre-of-mass separation: Vi, = V(Ri - Rj) .  

In I, we showed that the configurationally averaged diagonal Green function, G(z) = 
[z  - S(2)l-l (where the self-energy, S ( z ) ,  is thus defined), satisfies the following exact 
equations: 

z G ( z )  = 1 + p[G(z>l2 d(2) H(12) V(21) (2) 

(3) 

J 
H(12) = C(12) + &(z) 1 d(3) H(13) C(32). 

Combining these, we obtain the result 

zG(z) = 1 + p[G(z)]2 I - (;n;3 1 - C $ 2 i ( k )  (4) 

In these equations, i = 1, 2, . . . as the argument of a function is shorthand for R , ,  and 
d(i) dRi; for example, H(12) = H ( R ,  - R2) .  z = E + iq is the energy ( q  is a positive 
infinitesimal), p is the number density of sites, and the Fourier transform, f ( k ) ,  of a 
function f ( R )  is defined by 

f(k) = 1 dRf(R) exp (-ik.R). ( 5 )  

The function H( 12) is related to the configurationally averaged off-diagonal Green 
function, G(12), by 

C(12) = G(z)H(12)G(z). (6) 
As discussed in I, G( 12) and C( 12) are definedin terms of composite graphs consisting 

of a continuous, directed chain of V, bonds, with additional connectors from the s- 
particle structural distribution functions g,(l . . . s). Specifically, G(12) is the sum of all 
chain-continuous composite graphs containing two root points (RP) at the end stages 
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(labelled 1 and 2), a factor of p for each field point (FP), no one-articulation points (I- 
AP), and a factor of G(z )  associated with each stage. Similarly, C(12) is the sum of all 
chain-continuous composite graphs containing two RP at the end stages, a factor of p for 
each FP, no 1-AP, no one-chain bridge points (I-BP), a factor of G(z )  associated with 
each interior stage, and a factor of unity associated with each end stage. Expressed in 
renormalised form as above, the function C(12) is said to be strongly irreducible in the 
sense that it lacks both I-BP and i-AP; in consequence, the z dependence of C(12) is 
implicit in the G ( z )  dependence of the function, so that the right-hand side of the self- 
consistency equation (4) does not depend explicitly on z.  A stage is defined as a contact 
of the V-chain with a point. In any graph, the FP are integrated over whereas the RP are 
not. For the definitions of I-AP and i m ,  and for the derivation of the above equations, 
the reader is referred to I. Figure 1 shows all composite graphs in C(12) with a chain- 
continuous component of up to four Vij bonds (the RP are denoted by open circles and 
the Vij bonds by full lines). 

Although we have an algorithm for the construction of all graphs in C(12) (see I and 
Wertheim 1973), we do not have an exact closed expression for this function. Therefore, 
we must resort to approximation. Equation (3) provides a single relation between the 
two unknowns C(12) and H(12). To obtain a closed solution for C(12) and H(12), a 
second, so-called closure, relation between these functions must be provided via some 
suitable approximation. We note that equation (3) for H(12) is analogous to the 
Ornstein-Zernike (02) equation for the pair distribution function h2(12) ( =g2(12) - 1) 
of a fluid, with H(12) replacing h2(12), C(12) replacing the direct correlation function 
c2(12), and with p c ( z )  replacing p .  There is a vast literature devoted to obtaining a 
suitable closure relation to the oz equation of liquid-state theory (see for example 
Hansen and McDonald 1986). If, by exploiting analogies in conventional liquid-state 
theory, we could obtain a suitable closure relation to equation (3), then we could 
determine H(12), and hence G(z) via equation (2). This approach is different to that 
used in many theories for G ( z )  (e.g. Ishida and Yonezawa 1973, Movaghar and Miller 
1975, Katz and Rice 1972). Here we insist that the oz form, equation (3), for H(12) is 
maintained and we make approximations to the basic irreducible unit C(12). However, 
in other theories approximations are often made directly to H( 12) without the oz form 
being maintained, as discussed in I .  As well as the increased clarity provided by the 
present approach, we feel that breaking the oz form may have more serious implications, 
one of which will be mentioned in Q 4. 

In the next section we derive an approximate closure relation to supplement equation 
(3), by the use of the single super chain approximation (SSCA), originally suggested by 
Wertheim (1973) in his work on the classical dielectric theory of non-polar fluids, to 
which the present problem is formally analogous, as discussed in I. As we will show, the 
SSCA is equivalent to the effective-medium approximation (EMA) of Roth (1974a, b, 
1975, 1976-see also Yonezawa et a1 1975). To the best of our knowledge, no analytic 
solutions to the EMA equations have been given. Such solutions can, however, be 
obtained by exploiting some results of liquid-state theory. This is straightforward in the 
SSCA formulation, since this is based on H( 12) and C( 12) which are analogous respectively 
to the pair distribution function h2 and the direct correlation function c 2 ,  of liquid-state 
theory; in contrast, such analogies are not entirely obvious in the EMA formulation. In 
particular, if we take the pair distribution function, g2(R), between sites to be a simple 
step function, 8(R - o), then the SSCA is formally equivalent to the mean spherical 
approximation (MSA) of liquid-state theory (see e.g. Hansen and McDonald 1986). In 
the context of dielectric theory, the formal correspondence between the SSCA (with 
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Chain graphs 

- + - +  
1 2 1 2 

3 

A+A+A+ 1 2 1 2 1 2 

L 1 2 + .. . . . ,  * 

A+A+A+ 1 2 1 2 1 2 

1-1 1 2 + . . . . . .  

K+ 1 2 

3 1, 

N +  1 2 * 

* 

!OS + 

gd13452) - g4(1345)g2(52) - g?(134)g,(452) 
- gz(13)&(3452) + g3(134)gz(45)g2(52) 
+ gz(13)g?(345)g2(52) + gz(13)g2(34)g,(452) 
- g2(13)gz(34)g2(45)g2(52) 

1 2 
Figure 1. All composite, renormalised (1-ap-free) graphs contributing to C(12) with a 
chain-continuous component of up to four V,, bonds. A factor of p is associated with each 
FP, and a factor of G(z)  (1) is associated with each interior (end) stage. To the rows with 
asterisks add the 'mirror image' obtained by interchanging 1 and 2 in both columns. 



A soluble theory for the density of states 1757 

g2(R) = 8(R - a)) and the MSA for a fluid of permanent dipolar molecules (Wertheim 
1971) has been used by Wertheim (1973) to obtain analytic solutions for the renormalised 
static polarisability and hence the static dielectric constant of a non-polar fluid. An 
analytical continuation of Wertheim’s results into the complex energy or frequency 
plane yields the density of states appropriate to the case of an angle-dependent dipolar 
transfer matrix element, and also the frequency-dependent renormalised polarisability 
and dielectric constant of a non-polar fluid. The latter have been discussed by Hoye and 
Olaussen (1982) and Chandler et aZ(1982), although the methodology of these papers 
differs somewhat from that of Wertheim, and is based on a path integral approach to the 
statistical mechanics of a quantum polarisable fluid which has been studied extensively 
over the past few years (see e.g. Hoye and Stell 1981, Thompson et a1 1982, Schweizer 
and Chandler 1983, Logan 1984, Hall and Wolynes 1985, Schweizer 1986). 

In 8 3 of this paper, and for the case of a Yukawa transfer matrix element, we exploit 
the correspondence between the SSCA/EMA and the MSA, together with an analytic 
solution to the MSA for the pair distribution function of a classical hard-sphere fluid with 
particles interacting via a Yukawa potential (Waisman 1973, Hoye and Stell 1976, Hoye 
et a1 1976, Hoye and Blum 1977). We obtain thereby a simple quartic equation for the 
self-energy, which can be solved to yield G ( z )  and hence the density of states. In § 4 we 
analyse the results and compare them with the Matsubara-Toyozawa approximation 
(MTA) (Matsubara and Toyozawa 1961) for the perfectly random fluid (g2(R) = 1). 

2. Single super-chain approximation 

Expressing the first graph in C(12) (see figure 1) explicitly, we can write 

C(12) = g2(12)V(12) + T(12) (7)  
where T(12) is thus defined. We now obtain an approximate T(12) (denoted by P(12))  
by neglecting certain classes of graphs. First, we confine ourselves to a single-site 
description. As discussed in I, a general single-site theory is specified by two conditions: 
(i) the s L 3-body liquid distribution functions, g,(12. . . s), are approximated by the 
Kirkwood superposition approximation; (ii) only single-site graphs are retained in. T( 12), 
meaning those renormalised graphs (free of 1-AP) in which only asingle stage is associated 
with any point. We expect a single-site theory to lead to a better description of the density 
of states at higher number densities (see e.g. Movaghar and Miller 1975), since at lower 
densities multiple hopping between pairs of sites will become important, and such 
processes are omitted in any single-site theory. A typical single-site graph in T(12) will 
therefore consist of an open polygon of s - 1 g2(ij)V(ij) bonds connecting s points 
(s 3 3) with enough interior h2(ij) = g2(ij) - 1 connectors to render the graph strongly 
irreducible. We now make the further approximation of neglecting all graphs with 
crossing interior h2(ij) bonds. The lack of crossing h2(ij) bonds means that all graphs 
retained in the resultant T0(12) must possess an h2(12) bond between the RP, since the 
absence of such would otherwise guarantee at least one i-BP in each graph in To( 12). The 
presence of the h2(12) bond is, however, sufficient to ensure that the graphs in T0(12) 
are indeed strongly irreducible. If therefore we write 

T0(12) = h2(12)F0(12) (8) 
then F0(12) is the sum of all graphs consisting of an open polygon of s - 1 g2(ij)V(ij) 
bonds connectingspoints (s 2 3) with any combination of h2(ij) bonds connecting within 
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Figure 2. Ail composite, renormalised graphs contributing to h2(12)F"(12) with a chain of 
up to four g2(ij)V(ij)  bonds. Broken line between points i and j denotes a g 2 ( i j )  bond, and 
wavy line between points i and j denotes a short-ranged h,(ij) bond. A factor of pC(z) (1) 
is associated with each FP (RP). 

the periphery of the polygon such that none cross each other. The approximate C(12) is 
thus given by 

CO(12) = g,(l2)V(12) + h2(12)F0(12). (9) 

Figure 2 shows all the graphs in h2(12)F0(12) with up to four g2(ij)V(ij) bonds. The 
corresponding graphs in Fo( 12) are obtained simply by deleting the h2( 12) bond between 
the RP 1 and 2, and those in C0(12) are obtained by adding the single graph consisting of 
a full and a broken line between 1 and 2, representingg2(12)V(12). 

All graphs in F0(12) contain at least one 1-BP, and at each 1-BP the cut is unique, i.e. 
the maximal and minimal cuts (see I) are identical. By making cuts at all the 1-BP of the 
graphs in Fo( 12) we arrive at the expression 

F0(12) =pG(z)  d(3) C0(13)C0(32) + [pC(z)12 I 
x I/d(3)d(4)Co(14)Co(43)Co(32)+. . . 

= HO(12) - CO(12) 
where H0(12) is related to C0(12) by 

H0(12) = C0(12) + pG(z) d(3) H0(13)C0(32) (11) 

g2(12)C"12) = g,(l2)V(12) + h,(12)H0(12). (12) 

I 
in an analogous manner to equation (3). Combining equations (9) and (10) gives 

This is the central result of the SSCA. Equation (12) is the desired approximate closure 
condition to equation ( l l ) ,  which allows us to determine H0(12) in terms of G(z ) ;  
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equation (2), with H(12) replaced by HU(12), then gives a self-consistency equation for 
G(z) .  Note that equation (12) can also be written as 

HO(12) = CO(12) + g2(12)SO(12) (13) 

where C0(12) = g2(12)V(12) and SO(12) = HO(12)-CO(12). This is equation (25) of I for 
the case of the SSCA, and this is the form in which several alternative approximate single- 
site theories for G ( z )  were discussed and compared. 

TheEMAofRoth(1974a, b, 1975,1976)canbesummarisedbythefollowingequations 
in k-space (see for example, equations (3.4)-(3.6) of Whitelaw and McLaughlin (1979)): 

dk  
zG(z) = 1 + G ( z )  -M(k)G(k)P(k) S ( 2 4 3  

h2 ( k  - k')[M(k')] G(k'). (16) 
dk' 

M(k) = V ( k )  + 

Here, V ( k )  is the Fourier transform of g2(12)V(12), and G(k) is the Fourier transform 
of 

(2 G,6(Ri - R ) 6 ( R j  - R ' ) ) = p G ( z ) G ( R  - R I )  + p2G(R - R I ) .  
ij 

In fact, equations (14), (15) and (16) are equivalent to equations (2), (11) and (12), as 
can be seen by Fourier-transforming the latter and identifying M(k) with i'O(k) and G(k) 
with pG(z)&o(k)/i'o(k). But, although the SSCA and the EMA are equivalent, we feel that 
an approach via the SSCA formalism may be preferable, since the problem of solving an 
oz-type equation with an appropriate closure condition is common, and has been 
extensively studied. In particular, the SSCA formalism allows us to exploit analogies to 
more conventional problems in liquid-state theory, as we will discuss below. 

To proceed further we must solve equations (11) and (12) for Hu(12) and C0(12), 
with a given transfer matrix element, V(12). This requires a specification of g2(R), and 
in general these equations may be solved numerically with a pair distribution function 
obtained, for example, from experimental neutron scattering studies on the system of 
interest. For simplicity, we here consider a simple step function g2(R), corresponding to 
the low-density limit of a hard-sphere fluid with hard-sphere diameter U, i.e. 

g*(R) = B(R - 4 (17) 

where 8 is the unit step function. We also assume that the transfer matrix element V(12) 
(and hence H0(12) and CO(12)) is a function only of R = / R I  - R21. With equation (17), 
the SSCA/EMA closure condition, equation (12), reduces simply to 

Ho(R) = 0 :R < B 

Co(R)  = V(R) :R > U. (18b) 

Within the Kirkwood superposition approximation, and for any choice of g2(R) which 
vanishes inside a hard core, equation (18a) is exact since Ho(R) will always contain a 
g2(R) factor. The essential approximation in this model is thus equation (18b). 

We now note the similarity between the oz analogue equation ( l l ) ,  with the closure 
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conditions (18), and the familiar MSA of liquid-state theory (Lebowitz and Percus 1966) 
defined by 

h2(R)  = c2(R)  + p ldR’h2( lR-R’ l ) c , (R’ )  

h*(R)  = - 1 :R  < 0 (20a) 

C2(R) = - Pq(R)  :R  > 0. (20b) 
Here, h2(R) (c2(R))  is the total (direct) correlation function for a classical fluid of 
particles interacting pairwise-additively via the pair potential U(R)  given by 

:R  < 0 

:R  > 0 U(R)  = [;(RI 

where q ( R )  is a given function; P = ( k T ) - ’  is the inverse temperature. Equation (19) is 
the usual oz equation, equation (20a) is the exact hard-core condition, and equation 
(20b) is the characteristic approximation of the MSA. The MSA was first solved by Waisman 
and Lebowitz (1970) for the restricted primitive model of a 1 : 1 electrolyte in which q ( R )  
is of Coulombic form. Wertheim (1971) solved the MSA for a fluid of hard spheres with 
permanent point dipoles, and Waisman (1973) gave the solution when q ( R )  has a 
Yukawa form. These early solutions used Laplace-transform techniques similar to 
those employed by Wertheim (1963) in solving the Percus-Yevick equation for a one- 
component hard-sphere fluid. A more general technique is based upon a Wiener-Hopf 
factorization of the oz equation, as introduced by Baxter (1968), and H@ye and Blum 
(1977) have solved the MSA by this method when q ( R )  is given by an arbitrary number 
of Yukawa interactions. Smith (1979) has given the method of solution for q ( R )  of the 
form 

M 

2 q n r - n  e-gr 
n = N  

and Perram (1983) has considered the case of an arbitrary q ( R )  of finite range. 
As discussed in § 1, equation (11) is formally equivalent to the oz equation, (19). 

Equations (186) and (20b) are also formally equivalent, with V ( R )  f) -Bq(R) ,  but the 
hard-core closure condition on h2(R) (equation (20a)) is clearly slightly different from 
that for Ho(R) (equation (18~)).  However, the solution to the oz equation (19) with a 
closure condition 

h 2 ( R )  = 0 :R  < U (21) 
is usually no more difficult to obtain than that for the closure (20a). If, therefore, the 
MSA can be solved analytically for a given q ( R )  with the closure conditions (20b) and 
(21), then we can find immediately the solution of equations (11) and (18) relevant to 
the present problem. 

3. Averaged Green function for Yukawa transfer matrix element 

It is known that an exponential or modified exponential transfer matrix element of the 
general form V ( R )  = - V o f ( R )  exp( - aR)  is appropriate to describe several problems 
of physical interest, such as electronic transport in tightly bound bands of certain liquid 
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metals and alloys, the impurity band of a doped semiconductor, and triplet electronic 
excitons in the impurity band of isotopically mixed organic solids. The function f ( R )  is 
usually chosen as either a constant or a polynomial in R ,  but for simplicity of analysis we 
here consider the case wheref(R) = R-', corresponding to the Yukawa transfer matrix 
element 

V ( R )  = - (Vo/R) exp(-aR). (22) 
Waisman (1973) has solved analytically the MSA of liquid-state theory (equations 

(19) and (20))  for the case of a Yukawa rp(R), and Hpiye et a1 (1976) have pointed out 
that changing the core condition on h2(R) from equation (20a) to (21) results simply in 
the coefficients a and h of Waisman's solution being set to zero. With an appropriate 
modification of Waisman's (1973) results, we can thus obtain directly an analytic solution 
to the SSCA/EMA (equations (11)  and (18)) for a Yukawa transfer matrix element, and 
withg2(R) = 8(R - 0). Outside the core ( R  > a), Co(R) is given by equation ( lSb) ,  and 
inside the core the R-dependence of Co(R) is given by 

Co(R)= - S ( z ) ( l  -exp(-aR))/aR+ (S(z))2(cosh(aR) - 1 ) / 2 V o a 2 R  :R<o. 

(23) 
The function S(z) S(G(z ) )  is related to Ho(R)  by 

S(z) = p G ( z )  J Ho(R)V(R) dR (24a) 

and is given as a function of G ( z )  by solution of 

where y o  = y o ( S ( z ) )  is given by 

y o  = ( -Vo exp(-aR) - RCo(R)),=g-. 

Substituting equation (24a) into equation ( 2 )  yields 

zG(z)  = 1 + G ( Z ) S ( Z )  (25) 
and so we identify S(z) as the self-energy, a determination of which yields G(z) and 
hence the density of states. From equations (24b, c) and (23) ,  we see that S(z) satisfies 
the quartic equation 

4 n p G ( z ) {  - V, exp(-ao) + ( ~ ( z ) / a )  

x (1 -exp(-ao)) - [ ( S ( ~ ) ) 2 / 2 V o a * ] ( ~ ~ ~ h ( a o )  - 1)}2 

= 2 S ( z ) a +  (S(z))2v;1. (26)  

The system of interest has two length scales-the hard-sphere diameter o, and the 
effective Bohr radius aH = a-l-either of which can be chosen as the standard unit of 
length. Since we will be interested partly in liquid-like densities, we follow the norm of 
liquid-state theory and choose o as the basic length unit. We define 

v; = Vo/a 

p* = pa3 
(which has dimensions of energy), and the reduced (dimensionless) variables 

a* = a0 = 0 / U H  i = ./vi. (27a) 
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We also define a reduced self-energy, S(z ) ,  and a reduced averaged diagonal Green 
function, G(z) ,  by 

S(z) = S(z)/V,* G ( 2 )  = v,* G(2). (27b) 
Equations (26) and (25) thus simplify to 

4np*G(z){-exp( -a*) + ( S ( z ) / a * ) ( l -  exp(-a*)) - [(S(z))’/2a*’](cosh(a*) - l)}’ 

= 2a*S(2)  + (S(2))’ (28) 

and 

G ( 2 )  = ( 2  - S(z))-l. 

Finally, substituting G ( z )  (as given by equation (28))  into equation (29) ,  and rearrang- 
ing, gives 

f =  
4np* 

S(z)(2a* - S(2 ) )  

Solution of equations (29)  and (30) yields the density of states, D(E) ,  or the reduced 
density of states, d ( ~ ) ,  given by 

where we decompose the reduced energy, 2 ,  as 

i = ~ + i q .  

Before proceeding to a determination of the full density of states we must decide 
which of the four roots of equation (30) ,  a quartic for S(z ) ,  is physically appropriate. In 
the limit that 77 + 0, equation (29) shows that S(z)  is complex only if G ( E )  is complex, 
i.e. within the band. In figure 3 we show a typical sketch of E versus 3 obtained from 
equation (30)  for real S .  The figure implies that in the energy intervals E -  < E < E +  and 
E < E ~ ,  there are two complex values of which satisfy equation (30) .  These are therefore 
the energy intervals in which G(E)  can be complex. To select the physically valid root 
we note that (as follows directly from the locator expansion for the diagonal Green 
function) G(E)  + 1 / ~  as E +  5 a; thus from equation (29) ,  S(E)  + 0 as E +  +- W .  The 
physically required root of equation (30 ) ,  for E outside the band, is thus that indicated 
by arrows in figure 3. Assuming that S(E)  is a continuous function of E ,  this root will 
connect points A and B of figure 3 in the region E -  < E < E, ,  but it will be complex. 
Hence we can identify E+ and E -  as the upper and lower band edges respectively. Within 
the band (E -  < E < E + )  there will in fact be two complex-conjugate roots connecting A 
and B. The real part of these roots decreases monotonically from E ,  to E - ,  and choosing 
the root with the negative (positive) imaginary part leads to d ( e )  ( - & E ) )  or, equiv- 
alently, corresponds to the limit q + 0’ (q + 0-). 

The band edges in the density of states, E ,  and E - ,  are thus readily found from 
the stationary values of equation (30). In figure 4 we show the resultant band-edge 
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Figure 3. A typical schematic plot of E against s for real 3, as obtained from equation 
(30). 

trajectories, ~ + ( p * )  and E&*) ,  as functions of p* for several different values of the 
ratio a* = u/aH. For a given value of a*, the band width increases with increasing 
density, as one expects, and the band becomes increasingly asymmetric. For a given p* ,  
we also see that the asymmetry in the band-edge trajectories becomes increasingly 
marked as we progressively diminish a*, leading in particular to a very long low-energy 
tail in the density of states. In fact the figure does not capture fully the extent to which 
the lower band edge rapidly diminishes with decreasing a*, and in table 1 we give E, 

l.C 

e 
C W 'p 

U 
d 
i 0.5 
LT 

-9 -6 -3 
Reduced energy Reduced energy 

Figure 4. Upper and lower band-edge tra- 
jectories, E- (p * ) ,  as functions of reduced den- 
sity, p * ,  for (A) a* = 1, (B) a* = 0.5 and (C) 
a* = 0.05. 

Figure 5. The reduced density of states, B(E), 
forp* = 0.005 and (A) a* = 1, (B) a* = 0.5 and 
(C) a* = 0.05. 
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Table 1. Upper band edges ( E + )  and lower band edges ( E - )  for several p* and a* 

P* a* &. 

0.005 1.00 
0.50 
0.05 

0.100 1 .oo 
0.50 
0.05 

1.000 1.00 
0.50 
0.05 

0.115 
0.239 
0.511 

0.365 
0.626 
0.990 

0.642 
0.968 
1.359 

-0.149 
-0.412 

-25.151 

-1.008 
-4.142 

- 502.125 

-8.640 
-44.984 

-5020.819 

and E -  for three reduced densities, varying a* = U / U ~  from 1 to 0.05 in each case. For 
p* = 0.1, for example, we see that E -  Î -1.1 and E ,  Î 0.37 for o = uH, whereas E -  

drops to E -  = -502 for uH = 20u, with E ,  = 0.99. This marked increase in band width 
obviously reflects the increased spatial range of the transfer matrix element as uH = CY-' 

is increased for a given value of o. 

4. Density of states 

We can now proceed to a determination of the energy spectrum via equations (29) and 
(30). This is done by selecting a complex value of s, and finding the appropriate E = Re 2 
from equation (30) and the corresponding G(E) (and hence @ E ) )  from equation (29). 
Obviously not all values of are acceptable, since Im 2 determined by equation (30) 
must be zero. In practice, we take a value of Re 3 between those values associated with 
points A and B in figure 3, and vary In1 until Im 5 given by equation (30) is equal to 
zero. The resultant S, together with the E determined from equation (30), is inserted 
into equation (29) to give G(E), and @ E )  is finally obtained from equation (33). It is 
usually obvious whether or not one has chosen the correct root of equation (30). For 
example, if p* and a* are such that the plot of E against s for real is as in figure 3, then 
for E -  < E < E ,  choosing the wrong complex root will result in a negative D(E) .  

In figures 5-7 we plot the resultant density of states D(E)  for the three reduced 
densities of table 1, p* = 0.005 (figure 5), p* = 0.1 (figure 6) and p* = 1 (figure 7); 
and in each figure we show the predicted D(E)  for three different values of a* = au, 
namely a* = 1.0 (curve A), 0.5 (curve B) and 0.05 (curve C). For p* = 0.005 and 
U / U ~  = 1 (curve A of figure 5) the predicted density of states is relatively symmetric 
about E = 0; but for all cases in figures 5-7 we see that d ( ~ )  becomes increasingly 
asymmetric as a* = o/uH is decreased (A- C in each figure), i.e. as the range 
parameter, uH, of the transfer matrix element becomes the dominant length scale. The 
asymmetry is particularly pronounced for larger p* and smaller a*, and its origin has 
been discussed by Logan and Wolynes (1986) in terms of screening (anti-screening) 
of the spatial range of an effective transfer matrix element in the upper (lower) region 
of the band. We note also that the band-edge behaviour of the density of states, for 
both the upper and lower edges, has the characteristic square-root form expected for 
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Figure 6. The reduced density of states, B(E), 
for p *  = 0.1 and (A) a* = 1, (B) a* = 0.5 and 
(C) a* = 0.05. Note the change in scale from 
that used in figure 5 .  

Figure 7. The reduced density of states, d ( ~ ) ,  
for p* = 1 and (A) a* = 1, (B) CY' = 0.5 and (C) 
a* = 0.05. Note the change in scale from those 
used in figures 5 and 6 .  

three-dimensional systems, i.e. D(E) 
Numerical integration shows that the SSCA/EMA D(E) is correctly normalised to 

unity. This is also true of the MTA density of states for a perfectly random system. In 
both cases (SSCA/EMA and MTA) the oz analogue equation ( 3 )  relating H(12) to C(12) 
is correctly preserved. In contrast, however, the oz form of equation ( 3 )  is broken in 
the approximate single-site theories of Movaghar and Miller (1975) (MM) and Ishida 
and Yonezawa (1973) (IY), as discussed in I. Movaghar and Miller (1975) note that in 
both the MM and IY theories, the density of states is not correctly normalised. These 
results suggest that one effect of breaking the oz form of equation (3) may be to 
violate the normalisation condition on D(E). If this is correct, then for any approximate 
single-site theory in which the oz form of equation ( 3 )  is broken, a determination of 
the Fermi energy, the density of states at the Fermi level, and in consequence electronic 
transport properties in a delocalised regime, may not always be wholly reliable. 

/E*  - &I1/* for I E +  - E I  1. 

The Fermi energy E ~ ,  is determined by 

D(E) d e  = n/2 

where IZ is the mean number of electrons per atom. For a half-filled band (n = l), 
is marked in figures 5-7 and is found always to be blue-shifted from E = 0, with both 

and E ~ / E +  increasing monotonically as p* (a*) is progressively increased (decreased) 
for fixed a* ( p * ) .  This emphasises the fact that although the low-energy tail in the 
spectrum becomes increasingly pronounced as p* (a*) is increased (decreased), the 
density of states there is small and the majority of states are in the upper half-band. 
For three fixed values of p * ,  the a* dependence of the density of states at the Fermi 
level, D ( E ~ ) ,  is shown in figure 8(a);  and for three values of a*, the p* dependence 
of D ( E ~ )  is shown in figure 8(b). For a* s 0.5 and p* 2 0.1, it is clear that d ( ~ ~ )  is 
insensitive to both p* and a*, but there is a significant dependence of D(cF) on p* 
and a* for smaller (larger) values of p* (a*). Note also that the density domain in 
which d(eF) is sensitive to variations in a* encompasses the critical transition density 
pZ - O.Ola* for a disorder-induced Anderson transition in an off-diagonally dis- 
ordered tight-binding model. 
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Figure 8. (a )  The reduced density of states at the Fermi level, as a function of a* 
for (A) p* = 0.005, (B) p* = 0.1 and (C) p* = 1. (b )  d(+) as a function of p* for (A) 
a* = 1, (B) a* = 0.5 and (C) a* = 0.05. 

It is known that all single-site theories for G ( z )  reduce to the MTA result in the 
limit of a completely random distribution of sites. This can be shown for the SSCA by 
setting (T = 0 in equations (18); this gives the condition Co(R) = V ( R )  for all R ,  which 
when substituted into equation (4) gives the MTA result 

This can be rewritten as 

zG(z) = 1 + p(G(z))* 1 dR Q>(R)V(-R) 

where @ ( R )  Q(R;  pG(z))  is the inverse Fourier transform of v(k)[l - pG(z)v(k) ] - ' .  
If @ ( R )  were replaced by its lowest-order approximation, V(R) ,  then as discussed in 
I equation (32b) would lead to a symmetric Hubbard density of states. In this context, 
therefore, @ ( R ;  pc(z ) )  can be regarded as an effective energy- and density-dependent 
transfer matrix element, the energy dependence of which leads to asymmetry in the 
resulting density of states (cf. Logan and Wolynes 1986). 

For the Yukawa matrix element, equation (22) ,  we have 

P(k)  = -4JTVo/(a2 + k 2 )  (33) 

and hence 

&(k;  pC(2) )  = -4JTVo/(g2 4- k 2 )  

where 

Ci? = [a2 + 4npVoG(z)]1/2. 

Taking the inverse Fourier transform gives 

O ( R ;  pC(z))  = -(v,/R) exp(-ii.R). (35)  

Thus @(R)  is also of Yukawa form but with a renormalised energy-dependent decay 
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Figure 9. The reduced density of states, D ‘ ( E ’ ) ,  obtained from the SSCA/EMA for p’ = 2.4 
and (A) (Y’ = 0.5, (B) a* = 0.2, compared with (C) the perfectly random limit result 
(a* = 0) obtained from the MTA for p’ = 2.4. Note the different set of units used from 
those used in figures 5,  6 and 7 .  

length k-’, although it must be remembered that iu is complex inside the band and so 
O(R) will contain an oscillatory factor. Substituting equation (35) into (32b) and 
performing the integration shows that G(r)  satisfies the cubic equation 

4npV; (G(~) )~  - ( z 2  + 2 a V ~ ~ ) ( G ( 2 ) ) ~ + 2 ( 2 + V o ~ ) G ( ~ )  - 1 ~ 0 .  (36) 

For a completely random distribution of sites, aH = a-’ is the sole length scale in the 
problem. Defining the dimensionless variables 

p’ = pa-3 2‘ = z/Vb G’(2) = VhG(2) (37) 
where Vb = V o a  has dimensions of energy, equation (36) reduces in the limit of real 
2’ = E’ to 

4np’(G’(&’))3 - (&’2$2&’)(G’(&’))* +2(&’+ 1)G’(&‘) - 1 =o.  (38) 

For energies outside the band, equation (38) has three real roots. Within the band, 
equation (38) has two complex-conjugate roots, and that with the negative imaginary 
part gives the dimensionless density of states via 

D’(E ’ )  = v ~ D ( E ’ )  = -n-’ Im GI(€’). (39) 
Note that by choosing that root of equation (38) with the negative imaginary part, we 
are implicitly taking the limit of 2‘ = E’ + iq as q + Of rather than as q -+ 0-. 

To compare the density of states resulting from the MTA equations (38) and (39) 
with the previous SSCA/EMA results, we use the following expressions which interrelate 
the relevant variables in the two theories: 

& I  = &a*-l D’(E’) = a*D(E). (40) P’ = P * a * - 3  
Figure 9 shows the density of states D’(E’ )  for a fixed p’ = pa; = 2.4, and for (i) a* = 
0.5 (curve A),  (ii) a* = 0.2 (curve B) and (iii) a* = 0 (curve C). Curve C is the MTA 
result and curves A and B are from the SSCA/EMA, corresponding to p* = 0.3 and 
p* = 0.0192 respectively. The lower band edges occur at E ’  = -27.38 (A), -30.37 (B) 
and -31.15 (C); the corresponding upper band edges occur at E‘  = 1.59 (A), 2.92 (B) 
and 5.01 (C), and it is interesting to note that the inclusion of 0 has a greater relative 
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effect on the upper band edge than on the lower edge. Figure 9 illustrates clearly the 
significant effect that inclusion of the hard-sphere diameter u has upon the density of 
states. For example, in liquid metals that are adequately described by a tight-binding 
model, the mutual impenetrability of the ion cores, represented by u, cannot be 
ignored and we would expect the density of states to be more like curve A than curve 
C. In contrast, for many doped semiconductors the effective Bohr radius, aH = m-l, 

of the impurity species is much greater than u, giving a low value of a* and hence a 
more diffuse density of states. To obtain an adequate representation of the density of 
states for a particular system of interest, care must clearly be taken to include the 
appropriate value of u. 

5. Discussion 

In the preceding sections we have developed an analytic solution to the SSCA/EMA for 
a Yukawa transfer matrix element, and for the simple case of a step function pair 
distribution function. This yielded a quartic equation, (30), for the self-energy which 
was solved to give the configurationally averaged diagonal Green function and hence 
the density of states. It is known that the EMA is the most accurate theory for the 
density of states of spatially disordered systems at higher densities (see e.g. Roth 1976, 
Aloisio et a1 1981), but the EMA has also been regarded as more difficult to implement 
computationally than other less accurate single-site theories such as those of Ishida 
and Yonezawa (1973) and Movaghar and Miller (1975). As we have discussed, 
however, the EMA and the SSCA are equivalent, and can be solved analytically for the 
case g2(R) = B(R - a),  and for a wide variety of transfer matrix elements of which a 
Yukawa is probably the simplest. Moreover, liquid-state techniques are available 
whereby the oz form, equation (3), with the closure relation, (12), may be solved 
numerically for a more realistic pair distribution function. 

We also add that, although our primary interest has been in the averaged diagonal 
Green function, the theory also yields the averaged off-diagonal Green function, 
G(12) = G ( R ) .  The latter, once G ( z )  and S(z) are known from equations (29) and 
(30), can readily be obtained from equations (3), (6), (18b) and (23). The electrical 
conductivity of the disordered system is related to the configurational average of a 
product of two (in general) off-diagonal Green functions (Matsubara and Toyozawa 
1961). In the limit of weak disorder (the Boltzmann regime) this average can be 
broken, and approximated as a product of averaged Green functions; hence, with 
c ( z )  and G ( R )  known, we can calculate the electrical conductivity. This approach is 
of course valid only at high enough densities where the electronic states are sufficiently 
extended that scattering due to the disorder can be described by a Boltzmann equation. 
This is also the density region in which we expect the SSCA/EMA to yield an accurate 
description of the averaged Green functions required to calculate the Boltzmann 
conductivity. 

We now discuss briefly some possible extensions of the theory developed in this 
paper. As was mentioned in 8 1 (and discussed in detail in I), inclusion of site-diagonal 
disorder is straightforward for any single-site theory, with the site energies regarded 
as independent random variables with a given normalised probability distribution 
P(E, ) .  As shown in I ,  the single-site averaged diagonal Green function, averaged over 
all configurations and site energies, is determined from 
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Here S ( z )  = S(G(z))  is the single-site self-energy, which is independent of E, and, if 
viewed as a function of G ( z ) ,  is identical to the self-energy in the absence of diagonal 
disorder (equation ( 2 4 ~ ) ) ;  for the case of the SSCA/EMA with gz(R)  = B(R - 0) and 
Yukawa V(R), this is precisely the S(G(z ) )  obtained from equation (26). Therefore, 
given a form for P(E,), we can obtain G ( z )  (and hence the density of states) in the 
presence of site-diagonal disorder, once we know S ( G ( z ) )  in the absence of diagonal 
disorder. A particularly simple example occurs when E, has a Lorentzian distribution 

P(E,) = yn-'/(y2 + E T )  (42) 
with a halfwidth y .  This may be used to model inhomogeneous broadening effects 
relevant, for example, to the impurity band of a doped and compensated semicon- 
ductor, or to the case of electronic excitons, where y may be density- and temperature- 
dependent. Equations (42) and (41) combine to yield 

( z  + iy)G(z) = 1 + G ( z ) ~ ( z )  (43) 
for Im z > 0. Comparison with equation (25) shows that the effect of including 
Lorentzian site disorder is simply equivalent to moving z into the complex plane by an 
amount iy. For the SSCA/EMA Yukawa problem discussed in 8 3, a simple replacement of 
i = E + iO+ by 2 = E + iy ( y  = y/V,*) in equation (30) yields the appropriate S(z )  
which, when combined with equation (43), gives G ( z )  for the case of Lorentzian site 
disorder. 

Another physical effect that is readily included is that of excitation loss mechanisms 
from a site, such as radiative decay processes (e.g. fluorescence or phosphorescence) 
relevant to electronic excitations. Such processes are incorporated simply by setting 
z = E + iq, where q is finite and corresponds essentially to an inverse radiative decay 
time. The inclusion of loss mechanisms characterised by a finite q is obviously 
mathematically equivalent to including Lorentzian site disorder in a single-site theory. 
If both effects are present, then the single-site G ( z )  will be given via equation (43) 
with z = E + iq. In the limit of weak inter-site coupling (small V, and/or p )  it is clear 
from equations (43) and (24a) that the resultant density of states, D ( E )  = -n-' Im 
G(E + iq), tends to a Lorentzian form with a half-width of q + y arising from a 
combination of static (inhomogeneous broadening) and dynamical (loss) effects. The 
subsequent evolution of D ( E )  with increasing density is determined as described 
above. 

One defect of the SSCA/EMA, which it shares with all other single-site theories, is 
that it does not give a correct description of the density of states at number densities 
sufficiently low that multiple-hopping processes between sites (described by non- 
single-site graphs) become important. Another improvement to the theory presented 
here would therefore be to include additional pair-site graphs in C'(12). This can be 
achieved via an alternative closure relation to the oz analogue equation, (11); for 
example, 

g2(12)v(12) + g2(12)(H0(12) - CO(12)) 
1 - (G(Z)V(l2))2 

H0(12) = (44) 

where we assume for convenience that V(12) = V(21). This is similar to the SSCA 
closure relation, (13), except for a more complex C0(12) term which describes all 
multiple-hopping processes between a pair of sites. The second term on the right-hand 
side of equation (44) depends explicitly on density (see equation ( l l ) ) ,  and so at low 
densities the first term will clearly dominate. If we therefore neglect the second term 
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and substitute equation (44) into equation ( 2 ) ,  we obtain the correct low-density limit 
of the self-consistency equation for G ( z ) ,  as derived by Elyutin (1981) for the case 
g*(R) = 1: 

The density of states resulting from equation (45) at low values of p has been discussed 
in some detail in I (see also Gibbons et a1 1988). If, on the other hand, we approximate 
the first term on the right-hand side of equation (44) by its leading term, g2(12)V(12), 
we recover the SSCA result. The closure equation (44) thus leads to an SscA-like theory 
with the additional advantage that it reduces to the correct low-density limit, unlike 
true single-site theories. This approach is similar in spirit to that of Tsukada (1974) 
and Whitelaw and McLaughlin (1979), except that these authors have introduced the 
somewhat artificial idea of enclosing a pair of sites inside a sphere, and treating 
differently the self-energy contributions from inside and outside the sphere. 

In general, equation (11) with the closure relation (44) may be solved numerically 
to give H0(12) as a function of G(z) ,  insertion of which into equation (2) yields a self- 
consistency equation for G(z) .  To proceed analytically, however, it is convenient to 
consider again the simple pair distribution function g2(R) = 8(R - 0). Coupled with 
equation (44), this yields the two closure relations 

HO(R) = 0 

co(R)  = {v(R)/[1- (G(z)V(R))2])  

: R  < 0 

: R  > 0 
(46) 

which, like equations (18), resemble the MSA closure conditions (21) and (20b), but 
for a more complicated potential. The simplest case would be to take V(R) constant 
and finite over a range 0 < R < L ,  and zero for R > L ,  and to use Perram's (1983) 
method to obtain a solution to the oz analogue equation, (11). Although this is a 
simplistic transfer matrix element, it may be sufficient to assess the importance of 
including multiple-hopping processes between pairs of sites; see also Whitelaw and 
McLaughlin (1979) who have incorporated multiple-hopping effects in a one-dimen- 
sional tight-binding model. 

Finally, we comment on inclusion of overlap in the model. It has been implicitly 
assumed that the site orbitals form an orthonormal set. Relaxation of the orthogonality 
assumption is, however, achieved simply by replacing the transfer matrix element V,, 
with an effective energy-dependent transfer matrix element V,, = Vl, - ( z  - .z,)S,,, 
where S ,  = S(R,) is the overlap integral between orbitals on sites i and j .  For pure off- 
diagonal disorder (E ,  = 0 for all j ) ,  and with Vt, replaced by V[, - zS,, the analysis of 
Q Q  1 and 2 is applicable to this case. It should, however, be noted that C(12), expressed 
in strongly irreducible form, now depends explicitly on the energy variable z through 
the energy dependence of Vt,; in contrast to the case of orthogonal orbitals considered 
previously, the right-hand side of the self-consistency equation, (4), thus depends 
explicitly on z .  The effects of including overlap in the EMA have been studied 
numerically (e.g. Roth 1976) for the case in which the overlap integral, S ( R ) ,  and the 
transfer matrix element, V ( R ) ,  have the same R-dependence. For the Yukawa transfer 
matrix element, equation (22) ,  and with V(R) = i lS(R),  overlap effects are readily 
incorporated into the analytic solution of the SSCA/EMA described in § 3, by replacing 
Vo with Vo[l - z/i l] .  
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